Skip to main content Skip to navigation
APC-R700 Mouse Anti-Human CD11c
APC-R700 Mouse Anti-Human CD11c
Flow cytometric analysis of CD11c expression on human peripheral blood leucocytes. Human whole blood (collected with heparin as the preferred anticoagulant rather than EDTA) was stained with either BD Horizon™ APC-R700 Mouse IgG1, κ Isotype Control (Cat. No. 564974; Left Plot) or BD Horizon APC-R700 Mouse Anti-Human CD11c antibody (Cat. No. 566609/566610; Right Plot) at 1 µg/test. Erythrocytes were lysed with BD Pharm Lyse™ Lysing Buffer (Cat. No. 555899). Two-parameter flow cytometric contour plots showing the correlated expression of CD11c (or Ig Isotype control staining) versus side light-scatter (SSC-A) signals were derived from gated events with the forward and side light-scatter characteristics of viable leucocyte populations. Flow cytometric analysis was performed using a BD LSRFortessa™ Cell Analyzer System. Routine flow cytometric analysis is performed on human peripheral blood leucocytes. Data shown on this Technical Data Sheet are not lot specific.
Flow cytometric analysis of CD11c expression on human peripheral blood leucocytes. Human whole blood (collected with heparin as the preferred anticoagulant rather than EDTA) was stained with either BD Horizon™ APC-R700 Mouse IgG1, κ Isotype Control (Cat. No. 564974; Left Plot) or BD Horizon APC-R700 Mouse Anti-Human CD11c antibody (Cat. No. 566609/566610; Right Plot) at 1 µg/test. Erythrocytes were lysed with BD Pharm Lyse™ Lysing Buffer (Cat. No. 555899). Two-parameter flow cytometric contour plots showing the correlated expression of CD11c (or Ig Isotype control staining) versus side light-scatter (SSC-A) signals were derived from gated events with the forward and side light-scatter characteristics of viable leucocyte populations. Flow cytometric analysis was performed using a BD LSRFortessa™ Cell Analyzer System. Routine flow cytometric analysis is performed on human peripheral blood leucocytes. Data shown on this Technical Data Sheet are not lot specific.
Product Details
Down Arrow Up Arrow


BD Horizon™
ITGAX; AlphaX Integrin; Axb2; Integrin alpha-X; CR4; SLEB6; p150,95 alpha
Human (QC Testing), Rhesus (Tested in Development)
Mouse IgG1, κ
Human monocytes and synovial cells
Flow cytometry (Routinely Tested)
0.2 mg/ml
III 278; IV M66
3687
Aqueous buffered solution containing BSA, protein stabilizer, glycerol and ≤0.09% sodium azide.
RUO


Preparation And Storage

Store undiluted at 4°C and protected from prolonged exposure to light. Do not freeze. The monoclonal antibody was purified from tissue culture supernatant or ascites by affinity chromatography. The antibody was conjugated to the dye under optimum conditions and unconjugated antibody and free dye were removed.

Recommended Assay Procedures

Note: The binding of the 3.9 antibody to CD11c is divalent cation dependent. Therefore, heparin is recommended for use as the blood anticoagulant rather than the EDTA chelating agent that might adversely affect 3.9 antibody binding and cellular stai

BD® CompBeads can be used as surrogates to assess fluorescence spillover (Compensation).  When fluorochrome conjugated antibodies are bound to CompBeads, they have spectral properties very similar to cells.   However, for some fluorochromes there can be small differences in spectral emissions compared to cells, resulting in spillover values that differ when compared to biological controls.  It is strongly recommended that when using a reagent for the first time, users compare the spillover on cell and CompBead to ensure that BD® CompBeads are appropriate for your specific cellular application.

Product Notices

  1. Since applications vary, each investigator should titrate the reagent to obtain optimal results.
  2. An isotype control should be used at the same concentration as the antibody of interest.
  3. Source of all serum proteins is from USDA inspected abattoirs located in the United States.
  4. Caution: Sodium azide yields highly toxic hydrazoic acid under acidic conditions. Dilute azide compounds in running water before discarding to avoid accumulation of potentially explosive deposits in plumbing.
  5. Alexa Fluor® is a registered trademark of Molecular Probes, Inc., Eugene, OR.
  6. For fluorochrome spectra and suitable instrument settings, please refer to our Multicolor Flow Cytometry web page at www.bdbiosciences.com/colors.
  7. Species cross-reactivity detected in product development may not have been confirmed on every format and/or application.
  8. Please refer to www.bdbiosciences.com/us/s/resources for technical protocols.
566609 Rev. 2
Antibody Details
Down Arrow Up Arrow
3.9

The 3.9 monoclonal antibody specifically binds to CD11c, which is also known as Integrin alpha X (αX Integrin/ITGAX), or p150,95 Integrin alpha chain. CD11c is a ~150 kDa type I transmembrane glycoprotein. It is expressed on monocytes, macrophages, granulocytes, NK cells, dendritic cells, and subsets of B and T cells. It associates with CD18 (Integrin beta 2/β2 Integrin) to form the CD11c/CD18 complex, which is also known as p150,95 Integrin, or the Type 4 Complement Receptor (CR4). CD11c/CD18 binds fibrinogen and reportedly serves as a receptor for iC3b and ICAM-1/CD54. CD11c/CD18 functions as an adhesion molecule that mediates cellular binding to ligands expressed on stimulated epithelium and endothelium. The 3.9 monoclonal antibody crossreacts with CD11c expressed by Rhesus macaque leucocytes.

566609 Rev. 2
Format Details
Down Arrow Up Arrow
APC-R700
The BD Horizon™ APC-R700 (APC-R700) Dye is a part of the BD APC red family of dyes. This tandem fluorochrome is comprised of an Allophycocyanin (APC) dye donor that has excitation maximum (Ex Max) of 651-nm and an acceptor dye, R700, with an emission maximum (Em Max) at 706-nm. APC-R700, driven by BD innovation, is designed to be excited by the red (627–640-nm) laser and detected using an optical filter centered near 710-nm (e.g., a 720/40-nm bandpass filter). APC-R700 is a brighter alternative to Alexa Fluor™ 700. Please ensure that your instrument’s configurations (lasers and optical filters) are appropriate for this dye.
altImg
APC-R700
Red 627-640 nm
651 nm
706 nm
566609 Rev.2
Citations & References
Down Arrow Up Arrow
View product citations for antibody "566609" on CiteAb

Development References (8)

  1. Autissier P, Soulas C, Burdo TH, Williams KC. Immunophenotyping of lymphocyte, monocyte and dendritic cell subsets in normal rhesus macaques by 12-color flow cytometry: clarification on DC heterogeneity.. J Immunol Methods. 2010; 360(1-2):119-28. (Clone-specific: Flow cytometry). View Reference
  2. Hogg N, Horton MA. Myeloid antigens: New and previously defined clusters. In: McMichael AJ. A.J. McMichael .. et al., ed. Leucocyte typing III : white cell differentiation antigens. Oxford New York: Oxford University Press; 1987:576-602.
  3. Hogg N, Takacs L, Palmer DG, Selvendran Y, Allen C.. The p150,95 molecule is a marker of human mononuclear phagocytes: comparison with expression of class II molecules.. Eur J Immunol. 1986; 16(3):240-248. (Immunogen: Flow cytometry, Immunohistochemistry, Immunoprecipitation). View Reference
  4. Myones BL, Dalzell JG, Hogg N, Ross GD. Neutrophil and monocyte cell surface p150,95 has iC3b-receptor (CR4) activity resembling CR3.. J Clin Invest. 1988; 82(2):640-51. (Clone-specific: Blocking, Functional assay, Immunohistochemistry, Inhibition, Radioimmunoassay). View Reference
  5. Sadhu C, Hendrickson L, Dick KO, Potter TG, Staunton DE. Novel tools for functional analysis of CD11c: activation-specific, activation-independent, and activating antibodies.. J Immunoassay Immunochem. 2008; 29(1):42-57. (Clone-specific: Flow cytometry). View Reference
  6. Schmidt RE. Non-lineage/natural killer section report: new and previously defined clusters. In: Knapp W. W. Knapp .. et al., ed. Leucocyte typing IV : white cell differentiation antigens. Oxford New York: Oxford University Press; 1989:517-542.
  7. Stain C, Jager U, Majdic O, et al. The phenotyping of human basophils with the Myeloid Workshop Panel. In: McMichael AJ. A.J. McMichael .. et al., ed. Leucocyte typing III : white cell differentiation antigens. Oxford New York: Oxford University Press; 1987:720-722.
  8. Van der Schoot CE, Daams M, Von dem Borne AEG, et al. Biochemical analysis of the myeloid panel. In: Knapp W. W. Knapp .. et al., ed. Leucocyte typing IV : white cell differentiation antigens. Oxford New York: Oxford University Press; 1989:868-876.
View All (8) View Less
566609 Rev. 2

 

Please refer to Support Documents for Quality Certificates


Global - Refer to manufacturer's instructions for use and related User Manuals and Technical data sheets before using this products as described


Comparisons, where applicable, are made against older BD Technology, manual methods or are general performance claims.  Comparisons are not made against non-BD technologies, unless otherwise noted.

For Research Use Only. Not for use in diagnostic or therapeutic procedures.