Skip to main content Skip to navigation
BV650 Rat Anti-Mouse CD45R/B220
BV650 Rat Anti-Mouse CD45R/B220
Two-color flow cytometric analysis of CD45R/B220 expressed on mouse splenocytes. Mouse splenic leucocytes were preincubated with Purified Rat Anti-Mouse CD16/CD32 antibody (Mouse BD Fc Block™) (Cat. No. 553141/553142). The cells were then stained with APC Hamster Anti-Mouse CD3e antibody (Cat. No. 553066/561826) and either BD Horizon™ BV650 Rat IgG2a, κ Isotype Control (Cat. No. 563236; Left Panel) or BD Horizon™ BV650 Rat Anti-Mouse CD45R/B220 antibody (Cat. No. 563893; Right Panel). Two-color flow cytometric dot plots show the correlated expression patterns of CD3 versus CD45R/B220 (or Ig Isotype control staining) for gated events with the forward and side light-scatter characteristics of viable splenic leucocytes. Flow cytometric analysis was performed using a BD™ LSR II Flow Cytometer System.
Two-color flow cytometric analysis of CD45R/B220 expressed on mouse splenocytes. Mouse splenic leucocytes were preincubated with Purified Rat Anti-Mouse CD16/CD32 antibody (Mouse BD Fc Block™) (Cat. No. 553141/553142). The cells were then stained with APC Hamster Anti-Mouse CD3e antibody (Cat. No. 553066/561826) and either BD Horizon™ BV650 Rat IgG2a, κ Isotype Control (Cat. No. 563236; Left Panel) or BD Horizon™ BV650 Rat Anti-Mouse CD45R/B220 antibody (Cat. No. 563893; Right Panel). Two-color flow cytometric dot plots show the correlated expression patterns of CD3 versus CD45R/B220 (or Ig Isotype control staining) for gated events with the forward and side light-scatter characteristics of viable splenic leucocytes. Flow cytometric analysis was performed using a BD™ LSR II Flow Cytometer System.
Product Details
Down Arrow Up Arrow


BD Horizon™
B220; Ly-5; CD45R; LCA; Ptprc; Protein tyrosine phosphatase receptor type C
Mouse (QC Testing)
Rat IgG2a, κ
Mouse Abelson Leukemia Virus-Induced pre-B tumor cells
Flow cytometry (Routinely Tested)
0.2 mg/ml
5788, 19264
AB_2738471
Aqueous buffered solution containing BSA and ≤0.09% sodium azide.
RUO


Preparation And Storage

Store undiluted at 4°C and protected from prolonged exposure to light. Do not freeze. The monoclonal antibody was purified from tissue culture supernatant or ascites by affinity chromatography. The antibody was conjugated with BD Horizon™ BV650 under optimum conditions, and unconjugated antibody and free BD Horizon™ BV650 were removed.

Product Notices

  1. Since applications vary, each investigator should titrate the reagent to obtain optimal results.
  2. An isotype control should be used at the same concentration as the antibody of interest.
  3. Caution: Sodium azide yields highly toxic hydrazoic acid under acidic conditions. Dilute azide compounds in running water before discarding to avoid accumulation of potentially explosive deposits in plumbing.
  4. Source of all serum proteins is from USDA inspected abattoirs located in the United States.
  5. Alexa Fluor® is a registered trademark of Molecular Probes, Inc., Eugene, OR.
  6. Brilliant Violet™ 650 is a trademark of Sirigen.
  7. For fluorochrome spectra and suitable instrument settings, please refer to our Multicolor Flow Cytometry web page at www.bdbiosciences.com/colors.
  8. Please refer to www.bdbiosciences.com/us/s/resources for technical protocols.
563893 Rev. 1
Antibody Details
Down Arrow Up Arrow
RA3-6B2

The RA3-6B2 monoclonal antibody specifically binds to an epitope on the extracellular domain of the transmembrane CD45 glycoprotein which is dependent upon the expression of exon A and specific carbohydrate residues. It is expressed on B lymphocytes at all stages from pro-B through mature and activated B cell, but it is decreased on plasma cells and a subset of memory B cells. The levels of CD45R expression on the B-cell lineage appear to be developmentally regulated. It is also reportedly found on the abnormal T cells involved in the lymphadenopathy of lpr/lpr and gld/gld mutant mice, on lytically active subsets of lymphokine-activated killer cells (NK cells and non-MHC-restricted CTL), on apoptotic T lymphocytes of mice injected with bacterial superantigen, on a population of NK-cell precursors in the bone marrow, and on B-lymphocyte, T-lymphocyte, and macrophage progenitors in fetal liver. The CD45R antigen has been reported not to be on hematopoietic stem cells, naive T lymphocytes, or MHC-restricted CTL. CD45 is a member of the Protein Tyrosine Phosphatase (PTP) family: Its intracellular (COOH-terminal) region contains two PTP catalytic domains, and the extracellular region is highly variable due to alternative splicing of exons 4, 5, and 6 (designated A, B, and C, respectively), plus differing levels of glycosylation. The CD45 isoforms detected in the mouse are cell type-, maturation, and activation state-specific. The CD45 isoforms play complex roles in T-cell and B-cell antigen receptor signal transduction. CD45R is commonly used as a pan B-cell marker; however, CD19 expression, detectable by the rat anti-mouse CD19 antibody (clone 1D3), is reported to be more restricted to the B-cell lineage. The rat anti-mouse CD45R antibody (clone RA3-6B2) has been reported to enhance isotype switching during in vitro B-cell responses and to inhibit in vivo B-cell responses. Cross-reaction of the RA3-6B2 clone with activated human T lymphocytes has also been reportedly observed.

The antibody was conjugated to BD Horizon™ BV650 which is part of the BD Horizon™ Brilliant Violet™ family of dyes. This dye is a tandem fluorochrome of BD Horizon™ BV421 with an Ex Max of 405-nm and an acceptor dye with an Em Max at 650-nm.  BD Horizon™ BV650 can be excited by the violet laser and detected in a filter used to detect APC-like dyes (eg, 660/20-nm filter).  Due to the excitation and emission characteristics of the acceptor dye, there will be  spillover into the APC and Alexa Fluor® 700 detectors.  However, the spillover can be corrected through compensation as with any other dye combination.

563893 Rev. 1
Format Details
Down Arrow Up Arrow
BV650
The BD Horizon Brilliant Violet™ 650 (BV650) Dye is part of the BD Horizon Brilliant Violet™ family of dyes. This tandem fluorochrome is comprised of a BV421 donor with an excitation maximum (Ex Max) of 406-nm and an acceptor dye with an emission maximum (Em Max) at 649-nm. BV650, driven by BD innovation, is designed to be excited by the violet laser (405-nm) and detected using an optical filter centered near 650-nm (e.g., a 660/20-nm bandpass filter). The acceptor dye can be excited by the Red (628–640-nm) laser resulting in cross-laser excitation and fluorescence spillover. Please ensure that your instrument’s configurations (lasers and optical filters) are appropriate for this dye.
altImg
BV650
Violet 405 nm
406 nm
649 nm
563893 Rev.1
Citations & References
Down Arrow Up Arrow
View product citations for antibody "563893" on CiteAb

Development References (17)

  1. Allman DM, Ferguson SE, Cancro MP. Peripheral B cell maturation. I. Immature peripheral B cells in adults are heat-stable antigenhi and exhibit unique signaling characteristics. J Immunol. 1992; 149(8):2533-2540. (Clone-specific: Flow cytometry). View Reference
  2. Asensi V, Kimeno K, Kawamura I, Sakumoto M, Nomoto K. Treatment of autoimmune MRL/lpr mice with anti-B220 monoclonal antibody reduces the level of anti-DNA antibodies and lymphadenopathies. Immunology. 1989; 68(2):204-208. (Clone-specific: Flow cytometry, In vivo exacerbation). View Reference
  3. Ballas ZK, Rasmussen W. Lymphokine-activated killer cells. VII. IL-4 induces an NK1.1+CD8 alpha+beta- TCR-alpha beta B220+ lymphokine-activated killer subset. J Immunol. 1993; 150(1):17-30. (Clone-specific: Flow cytometry, Fluorescence activated cell sorting, Immunofluorescence). View Reference
  4. Bleesing JJ, Morrow MR, Uzel G, Fleisher TA. Human T cell activation induces the expression of a novel CD45 isoform that is analogous to murine B220 and is associated with altered O-glycan synthesis and onset of apoptosis. Cell Immunol. 2001; 213(1):72-81. (Clone-specific: Flow cytometry). View Reference
  5. Coffman RL. Surface antigen expression and immunoglobulin gene rearrangement during mouse pre-B cell development. Immunol Rev. 1982; 69:5-23. (Immunogen: Blocking, Flow cytometry, Immunofluorescence, Immunoprecipitation). View Reference
  6. Domiati-Saad R, Ogle EW, Justement LB. Administration of anti-CD45 mAb specific for a B cell-restricted epitope abrogates the B cell response to a T-dependent antigen in vivo. J Immunol. 1993; 151(11):5936-5947. (Clone-specific: In vivo exacerbation). View Reference
  7. Driver DJ, McHeyzer-Williams LJ, Cool M, Stetson DB, McHeyzer-Williams MG. Development and maintenance of a B220- memory B cell compartment. J Immunol. 2001; 167(3):1393-1405. (Clone-specific: Flow cytometry, Fluorescence activated cell sorting, Immunofluorescence). View Reference
  8. George A, Rath S, Shroff KE, Wang M, Durdik JM. Ligation of CD45 on B cells can facilitate production of secondary Ig isotypes. J Immunol. 1994; 152(3):1014-1021. (Clone-specific: (Co)-stimulation, Functional assay). View Reference
  9. Hardy RR, Carmack CE, Shinton SA, Kemp JD, Hayakawa K. Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J Exp Med. 1991; 173(5):1213-1225. (Clone-specific: Flow cytometry, Fluorescence activated cell sorting, Immunofluorescence). View Reference
  10. Hathcock KS, Hirano H, Murakami S, Hodes RJ. CD45 expression by B cells. Expression of different CD45 isoforms by subpopulations of activated B cells. J Immunol. 1992; 149(7):2286-2294. (Clone-specific: Flow cytometry). View Reference
  11. Kobata T, Takasaki K, Asahara H, et al. Apoptosis with FasL+ cell infiltration in the periphery and thymus of corrected autoimmune mice. Immunology. 1997; 92(2):206-213. (Clone-specific: Flow cytometry). View Reference
  12. Krop I, de Fougerolles AR, Hardy RR, Allison M, Schlissel MS, Fearon DT. Self-renewal of B-1 lymphocytes is dependent on CD19. Eur J Immunol. 1996; 26(1):238-242. (Clone-specific: Flow cytometry). View Reference
  13. Laouar Y, Ezine S. In vivo CD4+ lymph node T cells from lpr mice generate CD4-CD8-B220+TCR-beta low cells. J Immunol. 1994; 153(9):3948-3955. (Clone-specific: Flow cytometry). View Reference
  14. Puzanov IJ, Bennett M, Kumar V. IL-15 can substitute for the marrow microenvironment in the differentiation of natural killer cells. J Immunol. 1996; 157(10):4282-4285. (Clone-specific: Flow cytometry). View Reference
  15. Renno T, Hahne M, Tschopp J, MacDonald HR. Peripheral T cells undergoing superantigen-induced apoptosis in vivo express B220 and upregulate Fas and Fas ligand. J Exp Med. 1996; 183(2):431-437. (Clone-specific: Flow cytometry). View Reference
  16. Rolink A, ten Boekel E, Melchers F, Fearon DT, Krop I, Andersson J. A subpopulation of B220+ cells in murine bone marrow does not express CD19 and contains natural killer cell progenitors. J Exp Med. 1996; 183(1):187-194. (Clone-specific: Flow cytometry, Fluorescence activated cell sorting). View Reference
  17. Sagara S, Sugaya K, Tokoro Y, et al. B220 expression by T lymphoid progenitor cells in mouse fetal liver. J Immunol. 1997; 158(2):666-676. (Clone-specific: Flow cytometry, Fluorescence activated cell sorting). View Reference
View All (17) View Less
563893 Rev. 1

 

Please refer to Support Documents for Quality Certificates


Global - Refer to manufacturer's instructions for use and related User Manuals and Technical data sheets before using this products as described


Comparisons, where applicable, are made against older BD Technology, manual methods or are general performance claims.  Comparisons are not made against non-BD technologies, unless otherwise noted.

For Research Use Only. Not for use in diagnostic or therapeutic procedures.